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Abstract

Infrastructure is the backbone of any country – it is essential
to create employment opportunities, improve the quality of
life for the poor and boost economic growth. However, nearly
a billion rural people worldwide lack basic accessible trans-
port. Building Bridges Non-Profit (BBNP) is a non-profit or-
ganization that creates rural access by working with national
and district-level governments to build trailbridges that can
be used by pedestrians, motorcyclists, and livestock. While
effective and arguably necessary for building trailbridges at
a larger scale, using a field-based method to identify where
trailbridges are needed is too time- and resource-intensive to
be completed at scale. This work presents a deep learning-
based approach to remotely identifying river crossings that
need a trailbridge using multi-modal geospatial data. First,
we describe how to extract each geospatial dataset, rasterize,
tile, and augment it. Then, we formulate the remote site iden-
tification problem as a binary classification problem and show
how to apply supervised and semi-supervised deep learning.
Our evaluation shows a performance of over 85% when test-
ing it within a country and over 77% accuracy when transfer-
ring the model knowledge to a different country, resulting in
a 61% and 34% increase in performance compared to using
satellite imagery.

Introduction

Nearly a billion rural people throughout the world lack
basic transportation access to essential destinations such as
markets, farms, schools, financial institutions, and hospi-
tals (Roberts, KC, and Rastogi 2006). Pedestrian ways, mo-
torcycle tracks, and roads that are not regularly accessible
present major obstacles to fundamental livelihood opportu-
nities for rural households. These households make up 79
percent of the world’s poor, with a poverty rate three times
higher than in urban areas (Nations 2019b). Recently, the
United Nations noted that networked infrastructure supports
72 percent of the 169 Sustainable Development Goals, high-
lighting the critical role that transportation infrastructure
plays in ending poverty (Nations 2019a).
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Figure 1: Remote site identification. Overview of deep
learning based approach. Based on the data provided by
Building Bridges Non-Profit (BBNP)1, coordinates of trail-
bridge sites are used to extract different data modalities to
create tiles. These tiles are being used for learning deep
learning models to identify potential trailbridge sites.

Building Bridges Non-Profit (BBNP)1 is a non-profit or-
ganization that creates rural access by working with na-
tional and district-level governments to build trailbridges
that can be used by pedestrians, motorcyclists, and live-
stock. Building Bridges Non-Profit “trailbridges” are pedes-
trian bridges designed to be durable, cost-effective, and can
be constructed in remote locations with little to no heavy
machinery; they are located primarily in rural areas along
“trails” or walking paths. To date, BBNP has created new
safe access for an estimated 1.5 million people in 20 nations
by constructing more than 400 trailbridges. A randomized
controlled trial conducted on BBNP projects in Nicaragua
demonstrated that communities with new trailbridges saw a
75 percent increase in farm profits, a 36 percent increase in
labor market income, and a 60 percent increase in women
entering the labor market (Brooks and Donovan 2021). A
matched cohort study in Rwanda, which served as a pilot
for a larger randomized controlled trial currently underway,
built on that work and found a 25 percent increase in labor
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Figure 2: One of the over thousands trailbridges built by
BBNP in Rwanda. This bridge connects Minazi and Mataba
Sectors, spans 52 meters, and serves an estimated 2,860 in-
dividuals.

market income following trailbridge construction (Thomas
et al. 2020).

BBNP conducts needs assessments to determine the scope
and distribution of trailbridge need. The field-based ap-
proach to needs assessment relies on relationships with gov-
ernment officials and community focus groups, who provide
locations where bridges are needed, in addition to context
and details regarding the challenges faced by rural commu-
nities in the target geography. While effective and arguably
necessary for a large-scale trailbridge program, the field-
based method is time- and resource-intensive and not prac-
tical for early-stage planning and development. Therefore,
BBNP has been researching ways to apply machine learn-
ing to identify river crossings that require a trailbridge. As
a baseline study, Building Bridges Non-Profit ran a machine
learning analysis using ”off-the-shelf” satellite imagery at
various zoom levels to identify potential trailbridge sites.
The results were underwhelming, with prominent striping in
“yes” and “no” reliable predictions. A majority of research
works has focused on applying deep learning to satellite im-
agery. However, the variance in data collection and the im-
age quality hamper the applicability and ultimately reduce
performance. In this work, we deviate from using satellite
imagery and present a deep learning-based framework that
leverages multiple geospatial data modalities to estimate po-
tential trailbridge sites. In particular, our contributions are:

1. We investigate different types of geospatial data (Open-
StreetMap base map and layers, population, administra-
tive bounds and digital surface models data) and describe
how to extract and rasterize them to be an appropriate in-
put for deep learning models.

2. We propose and evaluate random tile sampling and data
augmentation techniques for different geospatial data
modalities.

3. We present a large-scale evaluation of our supervised
and semi-supervised deep learning approaches with data
for Rwanda and Uganda, and analyze the efficacy of us-
ing non-satellite-imagery geospatial data for remote site
identification.

A visualization of our approach is in Figure 1.

Related Work
Geospatial data describe objects, events, or other features
with a location on or near the earth’s surface. Geospatial
data are critical for several applications, among others, pre-
cision agriculture (Praveen and Sharma 2020; Nash, Kord-
uan, and Bill 2009), urban planning (Sun and Du 2017; Long
and Shen 2015), disaster monitoring and response (Manfré
et al. 2012; Kawasaki, Berman, and Guan 2013), and climate
change assessment (Konisky, Hughes, and Kaylor 2016;
Hassani, Huang, and Silva 2019). Recent works have fo-
cused on applying deep learning to satellite imagery, given
the success of deep neural networks in similar computer vi-
sion tasks and the sheer volume of remotely sensed imagery
available. We refer to (Kiwelekar et al. 2020) for an in-depth
review of deep learning for geospatial data. However, the
variance in data collection and the image quality due to sea-
sonality, clouds, haze, and sun angle differences hamper the
applicability and ultimately reduce performance.

Most research approaches are limited to satellite imagery,
i.e., RGB or multi-spectral images. A few works have only
investigated the usage of heterogeneous data modalities. It
was explored through end-to-end deep networks in (Aude-
bert, Saux, and Lefèvre 2016; Ojogbane et al. 2021; Brown
et al. 2018; Audebert, Le Saux, and Lefèvre 2018; Hu et al.
2017) for LiDAR, SAR and RGB data. While all these
works investigated data fusion of various sensors, they did
not study the inclusion of highly processed, semantically
richer data. Only (Audebert, Le Saux, and Lefèvre 2017)
used OpenStreetMap in combination with satellite imagery
for semantic maps. To the best of our knowledge, the het-
erogenous data fusion of multiple highly-processed geospa-
tial data modalities without satellite imagery for deep learn-
ing has not been investigated so far.

Methodology
We investigated seven datasets to identify river cross-
ings: administrative boundaries provided by GADM1

(for Rwanda, Uganda), the National Institute of Statis-
tics Rwanda (for Rwanda) and public ArcGIS data2 (for
Uganda), terrain elevation and slope from the NASA-
DEM digital elevation model (Crippen et al. 2016) hosted
by the Google Earth Engine (Gorelick et al. 2017), Open-
StreetMap (OSM) base map images, roads, and water-
ways (Bennett 2010), and finally, the Worldpop popula-
tion distribution data3 (Tatem 2017). Some datasets’ re-
lation to river crossings is more evident than others, and
some datasets were included based on the assumption that
they would not be informative. Most of the geospatial data
modalities are provided in geospatial vector data format. We
converted the vector data to a rasterized format for deep
learning models to use the data for the whole countries of
Rwanda and Uganda. We refer to the Appendix for a detailed
description of each data modality’s data extraction and pre-
processing as well as a justification about the choice of data
modalities.

1https://gadm.org/
2https://www.arcgis.com/home/user.html?user=BarbaraSj
3https://www.worldpop.org



Data Tiling
We experimented with tile sizes of 300, 600, and 1200 me-
ters for the data tiles. With a margin of 25 meters, river cross-
ings can lie anywhere in the tile and do not have to align with
the tile center point. The margin was introduced to avoid
river crossings too close to the border of the tile. We visu-
alized the data tiles with their margin and the area in which
bridge sites can lie in Figure 3a.

For the training and evaluation, we sample random data
tiles with a potential trailbridge, i.e., need for a river crossing
(“positive” tile) or without a crossing (“negative tile”). We
define the squared data tiles with their center point and tile
size (the square length). Given the location of a trailbridge
site, we can create indefinitely many tiles that include the
trailbridge site. Starting from a data tile where the tile center
point and river crossing are in the same location, we can
create a valid tile with the bridge site by shifting the center
point. The only constraint with the shift is that both sides of
the river need to reside within the valid area. The resulting
area in which there are only “positive” tiles, i.e., tiles with at
least one bridge site, is visualized in Figure 3b. In this area,
there cannot be any center points of “negative” tiles, i.e.,
tiles with no bridge sites. We can construct a “negative” tile
by sampling a point outside the “positive” tile area, as long
as the “negative” tile does not overlap with any “positive”
tile.

Data Augmentation
In the case of this project, the amount of data is proportion-
ally small. However, the kind of data used has high complex-
ity, i.e., the data cannot be easily learned by a linear predic-
tor. For better generalization, we augment the training data
so that our model can learn from additional synthetically
modified data and is robust against different conditions, e.g.,
missing data, different orientations, and locations. Data aug-
mentations for natural images have been widely researched.
However, these data augmentations cannot all be used for all
data modalities in this work.

The data augmentation consists of two steps. First, we
augment all data modalities together. We refer to the con-
catenation of all data modalities as “tile image”. We shift the
tile center point by adding a small noise to the coordinates.
With a probability of p = 0.5, the tile image is flipped hori-
zontally. The image is rotated by a uniformly sampled angle
in the range of [−30, 30]. Then, for each data modality, we
developed a different type of augmentation:

• Augmenting binary data (roads, waterways, admin
bounds): Binary tiles are tiles with only two unique pixel
values, 0 and 1. The pixel value 1 usually denotes the
presence of a road or waterway or admin bound. With a
probability of p = 0.25, a pixel with a value 1 will be
set to 0. The pixel probabilities are independent of each
other.

• Augmenting terrain data (slope, elevation): We aug-
ment each unique terrain value by a rounded, randomly
Gaussian distributed value N (0, 2). The same terrain
value gets the same random number. We sort the unique
terrain values, and we sort the random numbers. Thus,

(a) Tile

(b) Area of all possible tiles given a bridge site

Figure 3: Visualization of data tile with a bridge site. We
assume that data tiles can contain a bridge site within a cer-
tain margin. However, the bridge site does not have to co-
incide with the tile center point. Given a bridge site, we
can create indefinitely many tiles within the area of all tiles
(outer square with red solid line).

smaller terrain values get a smaller change than larger
terrain values. This way, we ensure that the relative order
of terrain values will not be changed through augmenta-
tion.

• Augmenting population data: For each pixel represent-
ing a population count, we augment this count by sam-
pling from a Gaussian distribution and rounding this ran-
dom number. Formally, given a pixel value p we augment
it by p = p+ round(z), z ∼ N (0, 3).

• Augmenting maps (OSM image): We augment the pixel
values by sampling from a Gaussian distribution N (0, 3)
and round this random number. In order to ensure the
pixel values are between 0 and 255, we clip any values
outside the range to 0 or 255.

Remote Bridge Site Identification
Notation. Assume we have a dataset D = {X,Y } ∪
{XU}. X denotes the input, i.e., N tiles of M geospa-
tial data modalities as input X ∈ {X1, . . . ,XN}, Xi ∈
Rk×k×M , where k is the tile size and M is the number
of data modalities. Y represents the corresponding binary
labels Y ∈ {y1, . . . ,yN} ∈ [0, 1]. In addition to the la-
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Figure 4: Exemplary data augmentation of geospatial data modalities. The first row show all geospatial data modalities of
one location. The second row shows the tile after applying a random sequence of augmentation.

belled dataset, we have an unlabelled dataset {XU} =
{XU

1 , . . . ,X
U
K},K ≫ N .

Remote site identification as binary classification. We
formalize the problem of identifying a potential remote
bridge site as a binary classification problem. Given an in-
put Xi ∈ X and label yi, we first augment the input
X̂i = Augment(Xi) and use a neural network to output log-
its, the unnormalized final scores of your model. We calcu-
late pi, the normalizated prediction output, by applying the
Softmax function to the logits. In our evaluation, the model
is trained by minimizing a binary cross-entropy loss

L(X̂i,yi) = −yi log pi + (1− yi) log(1− log pi). (1)

Semi-supervised learning. Even though BBNP has been
extensively collecting data for the remote site assessment,
the data size remains rather small scaled, i.e., several thou-
sand data points. In case of an over-parameterized neural
network, optimization with small datasets can result in over-
fitting and thus, poor generalization. Semi-supervised learn-
ing has proven to be an effective technique for leveraging
unlabelled data. We apply MixMatch (Berthelot et al. 2019),
a state-of-the-art semi-supervised approach, to learning and
classifying remote sites.

In order for the paper to be self-contained, we
briefly describe the MixMatch (Berthelot et al. 2019) ap-
proach and its loss objective. Given an unlabelled sample
XU

i , i = 1, . . . ,K, we create two augmentations X̂U
i,1 =

Augment(XU
i ) and X̂U

i,2 = Augment(XU
i ). We use the

neural network f to “guess” the class distributions for the
augmented sample p̂Ui,1 = f(X̂U

i,1) and p̂Ui,2 = f(X̂U
i,2).

We average the predictions over both two augmentations
and sharpen it with a temperature T and denote the output
as p̂Ui = Sharpen(Average(p̂Ui,1, p̂

U
i,2), T ). We concatenate

both labelled and unlabelled sets W = {X̂i,yi}i=1,...,N ∪
{X̂U

i,j , p̂
U
i }i=1,...,K;j=1,2 and shuffle it. We use W to aug-

ment XU and X̂ with MixMatch (Zhang et al. 2018), i.e.,
literally mixing up the input and its corresponding label. The
resulting outputs are {X̃, Ỹ } and {X̃U ,P U}. The loss con-

sists of two parts

LMixMatch = L(X̃, Ỹ )︸ ︷︷ ︸
labelled loss

+L(X̃U ,P U )︸ ︷︷ ︸
unlabelled loss

, (2)

where L is the binary cross-entropy loss. Further MixMatch
uses a mean teacher(Tarvainen and Valpola 2017), i.e., pre-
dicting with exponential moving average of the model. We
refer to the original paper of MixMatch (Berthelot et al.
2019) for a deep-dive into the method.

Inference with averaging over several tiles. Instead of
using just one tile to predict whether a location is a remote
site, we used several randomly sampled tiles to average the
prediction to obtain a more robust prediction. Given a loca-
tion with latitude and longitude. x, y, we can sample H data
tiles Xi, . . . ,XH . The resulting prediction is calculated by
averaging over the normalized predictions pi, . . . , pH

y = argmax
( 1

H

H∑
i

f(Xi)
)
= argmax

( 1

H

H∑
i

pi

)
.

(3)

Evaluation
We evaluate the performance of using geospatial data to pre-
dict remote sites that require a trailbridge. In what follows,
we describe experimental settings, our main results and abla-
tion studies to understand the approach and data modalities.

Experimental Settings
Data Collection Over four years, Building Bridges Non-
Profit identified 1,321 sites in Rwanda and 247 sites in the
three districts in Uganda which were used for this project.
All 1,568 sites were visited in person to validate the site and
record GPS coordinates.

Data Split for Train, Validation and Testing We split the
data into three sets for training and evaluating the models:
train, validation, and test. We used the train set for optimiz-
ing the model parameters, the validation set for model selec-
tion (“choose the model with the best validation accuracy”),



(a) Data version 1 (in- and out-domain test)

(b) Data version 2 (in-domain test)

Figure 5: Geographical split of Rwanda and Uganda data
into train, validation and test. We split the labelled data
according to its geographic location into different sets (train,
validation and test). The unlabelled Uganda part (grey) was
used for semi-supervised learning (SSL).

and the test set only for evaluation after training. For the ex-
periments, we used two ways of splitting, data version 1 and
data version 2. For data version 1, we split Rwanda along its
longitude into eleven parts. The left-most and the rightmost
five parts were used as the train set, the left-most center part
was used as the validation set, and the rightmost center part
was used as the test set. In addition, we used three districts in
the western part of Uganda as the test set (highlighted area in
Figure 5). Those three districts Ibanda, Kasese, & Kabarole
are where BBNP completed a trailbridge assessment of the
entire district. This data version is more complex, as the test
set has in-domain (Rwanda) and out-domain (Uganda) test
instances. For data version 2, similar to data version 1, we
split Rwanda along its longitude into eleven parts and used
ten parts for training and one for validation. In addition to
that, we also split Uganda into eleven parts. We refer to the
Appendix for a more fine-grained visualization of the data
split.

Supervised and semi-supervised model architecture,
training and optimization. As the base of our super-
vised model, we used commonly used convolutional archi-
tectures such as ResNet-18, ResNet-50 and WideResNet-
50. We trained the supervised model for 200 epochs and
used a batch size of 128 and a learning rate of 0.0001 for
the Adam optimizer. For testing, we used the model with
the highest validation accuracy. In contrast to RGB images

used for these network architecture, our data input has more
than three channels. We replaced the first convolutional layer
with one that matches our data’s input channel. We either
trained all layers of the network or freeze all layers but the
first convolutional and last 9 layers (3 residual blocks). We
performed extensive hyperparameter search for our semi-
supervised MixMatch model that included model architec-
ture (ResNet-18, ResNet-50 and WideResNet-50), optimiza-
tion hyperparameter (learning rate, batch size) and model
hyperparameters. We selected the model to report based on
the best validation accuracy. We refer to the Appendix for a
detailed overview of the hyperparameter grid values.

Comparisons We extracted satellite images from the
Sentinel-2 MSI: MultiSpectral Instrument, Level-1C (Dr-
usch et al. 2012) for three different tile sizes (320m, 600m,
and 1200m). We used a ResNet-50 to train the extracted
satellite images. We used a batch size of 128 and a learning
rate of 0.0001 for the Adam optimizer. We vary the number
of trainable layers, for full (all layers), and transfer (only the
last nine layers) learning.

Main Results
We present the balanced accuracy scores of the supervised
and semi-supervised models in Table 1. We compared the
approaches with different combinations and types of data
modalities. We observe that the model trained on only
satellite imagery (“only SI”) performs poorly irrespectively
whether we trained the entire network or just the last nine
layers. The semi-supervised model performs best, outper-
forming all models by at least 10% balanced accuracy. Fur-
thermore, compared to training with only satellite imagery,
our semi-supervised model achieved a significant increase
in performance, i.e., approx. 34% and 61% boost in perfor-
mance for data version 1 and 2, respectively. When training
only with the best performing data modalities (admin bound-
aries, OSM base image, OSM waterways, and slope), the
ResNet-50 model already achieved high performance. The
different data versions showed a significant performance gap
between the two datasets. The test dataset that only has in-
domain test instances performance approx. 10% better than
the one with out-domain test instances (unknown Uganda
test instances) even if the semi-supervised approach uses
unlabelled Uganda data for training. When using all data
modalities, the full ResNet-50 model only performs simi-
larly or slightly better than the one using the best four data
modalities. We also plotted the prediction results as an ROC
curve in Figure 6. Additional results for tile sizes 300m and
600m, as well as weighted F1 scores for all models per tile
size, can be found in the Appendix.

Ablation Study
We perform several experiments to get better insights into
the impact of data modalities, data augmentation, averaging
inference, pretrained weights and tile sizes.

Impact of Data Modalities and Tile Sizes We investi-
gated which data modalities provided a relatively valuable
signal in determining the location of a bridge. We used an
identical training infrastructure – including hyperparameters



Model Data Modalities Data version 1 Data version 2
in- and out-domain test in-domain test

w/o SI AB, OSM-I, Only SI Rwanda Uganda avg. Rwanda Uganda avg.
OSM-W, SL test test test test test test

ResNet-50 (transfer) ✓ 49.06 ±0.90 66.53 ±1.77 56.10 ±0.77 49.10 ±0.23 64.11 ±4.97 54.26 ±0.70

ResNet-50 (full) ✓ 49.50 ±1.14 69.80 ±0.81 57.69 ±0.75 42.79 ±0.92 63.86 ±2.27 48.85 ±0.81

ResNet-50 (transfer) ✓ 65.00 ±1.33 66.07 ±0.47 68.20 ±0.51 62.52 ±0.43 78.91 ±1.56 75.08 ±0.67

ResNet-50 (full) ✓ 76.76 ±0.75 66.67 ±0.18 74.57 ±0.24 78.92 ±1.81 78.39 ±1.45 78.49 ±0.51

MixMatch (ResNet-50, full) ✓ 81.67 ±0.71 61.20 ±1.59 75.13 ±1.14 82.12 ±0.66 76.82 ±0.94 85.29 ±0.68

ResNet-50 (transfer) ✓ 61.80 ±2.67 68.60 ±0.76 68.17 ±0.51 58.65 ±2.64 61.51 ±1.71 74.23 ±1.20

ResNet-50 (full) ✓ 80.09 ±0.60 68.67 ±0.93 75.70 ±0.75 70.27 ±4.73 83.98 ±1.17 81.99 ±1.17

MixMatch (ResNet-50, full) ✓ 82.97 ±0.84 69.20 ±0.87 77.69 ±0.83 82.09 ±0.34 84.77 ±2.73 87.79 ±0.69

Table 1: Bridge site estimation (1200m) balanced accuracy results (higher is better). We present results (mean and standard
error for three runs each) for different models and different modalities. We used ResNet-50 as the architecture backbone, and
trained the entire network (full) or used it as transfer learning in which only the last N layers were trained (transfer). We varied
the types of data modalities used for training. We had three data modality settings: 1) all types of geospatial data except for
satellite imagery (w/o SI), 2) the best four performing data modalities admin boundaries (AB), OSM base image (OSM-I), OSM
waterways (OSM-w) and slope (SL), and 3) only satellite imagery (Only SI). We report balanced accuracy for both data versions
1 and 2 (with a detailed country-wise split) as mean and standard error over three independent runs with different seed.
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Figure 6: Receiver Operating Characteristic (ROC) for
data version 2. We plot the ROC of the baseline with satel-
lite imagery (“Only SI”) against our supervised approach
(w/o SI [ResNet50, full]) and our semi-supervised approach
(w/o SI [MixMatch, full]).

and model architecture – to train each data modality alone.
We refer to the Appendix for the experimental setup. Our
findings are visualized in Figure 7 in which we plot the vali-
dation accuracy during training for each tile size. For all tile
sizes, waterways, administrative bounds, slope, and OSM
image provide the most valuable and consistently reliable
signal regardless of the input size, resulting in high valida-
tion accuracies. The Population and OSM Roads modalities
do not - by themselves - provide a valuable signal. The vali-
dation accuracy of the elevation data modality is highly vari-
ant throughout the training run for each tile size – likely in-
dicating overfitting that is corrected as training continues.
The training on separate data modalities also showed no sig-
nificant impact of tile sizes on the model performance. We
observed with further experiments in the Appendix that an

Model arch. Augmentation Average Inference Pretrained Weights Test Acc.

ResNet-18 ✓ ✓ ✓ 83.24 ±0.40

ResNet-50 ✗ ✗ ✗ 77.92 ±0.83

ResNet-50 ✓ ✗ ✗ 79.22 ±0.50

ResNet-50 ✗ ✓ ✗ 80.26 ±0.41

ResNet-50 ✗ ✗ ✓ 79.19 ±0.97

ResNet-50 ✓ ✓ ✓ 81.57 ±0.35

WideResNet-50 ✓ ✓ ✓ 79.80 ±0.85

Table 2: Impact of augmentation, average inference and
pretrained weights. We measure the impact of data aug-
mentation, average inference and pretrained weights with
the balanced test accuracy of data version 2. The test ac-
curacies are reported as mean and standard error over three
runs.

increase in tile size only led to minor performance gains.

Impact of Data Augmentation, Averaging Inference and
Pretrained Weights We evaluated the impact of differ-
ent design choices (data augmentation, averaging inference,
and pretrained weights) by training supervised deep learn-
ing models with the same hyperparameter and optimization
settings while varying one or several of these choices. The
results of this ablation are shown in Table 2. The experi-
ments showed that all three features lead to a performance
gain, with the combination of all three choices leading to
the best performance for ResNet-50 (77.92% vs. 81.57%
balanced accuracy). Surprisingly, we achieved better over-
all performance with ResNet-18 than with ResNet-50 or
WideResNet-50. We hypothesize that smaller network archi-
tectures are more suitable and less prone to overfitting due
to the small dataset size. However, we have observed con-
sistently better performance with ResNet-50 for our semi-
supervised experiments.

Discussion
Is every river crossing a potential site? BBNP consid-
ers every river crossing in which the local community states
a trailbridge is needed to be a potential site. The only sites
considered not to be potential sites are where the community
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Figure 7: Impact of single modalities: Validation loss during training with identical model architecture and optimization for
different data modalities.

only wants a vehicle bridge or an existing bridge present or
within 300 meters that provides the community with year-
round access to cross the river. If many river crossings were
identified in adjacent tiles along the same waterway, BBNP
would manually analyze the best location for a trailbridge.
Local communities ultimately determine whether a trail-
bridge is needed at a site, and governments ultimately de-
cide how transportation budgets are allocated. BBNP intends
to use the remotely identified river crossings as an estimate
for the overall need in a region and starting point for where
to conduct field assessments rather than to determine where
bridges will ultimately be constructed.

Why did we not assume that the bridge site is in the cen-
ter of the river? The GPS coordinates which are used for
training data are collected when there is usually no bridge
present at the river crossing, thus the reason the community
is requesting a bridge. Therefore, the assessors would stand
at the river’s edge when collecting the coordinates. Putting
the coordinates precisely in the middle of the river would re-
quire manually checking and modifying every training point.

How likely are “negative” tiles negative? How likely is it
that BBNP missed identifying all bridge sites in Rwanda
We expect to miss some potential sites when conducting a
full coverage assessment, i.e., the Rwanda nationwide needs
assessment and the full coverage assessments in the three
districts of Uganda. In order to minimize the number of
sites missed, BBNP followed up with all local administra-
tions one level above the village level that submitted zero
requests to confirm there was no need for a trailbridge in
their domain. Additionally, assessors inquired about addi-
tional sites at every site they visited. Currently, BBNP has
1,438 locations where trailbridges have been requested by
communities in Rwanda. Since the 2018 Rwanda needs as-
sessment, 21 of the 1,438 sites were submitted after the as-
sessment was concluded. Over 100 other sites have been
submitted to BBNP in the last five years and were found
to have already been located and assessed. Despite the trail-
bridge program becoming more popular and known through-

out Rwanda and the Ugandan districts, fewer additional re-
quests come in each year, with a lower percentage of sites
being new requests each year. Building Bridges Non-Profit
is confident they have identified over 90 percent of the po-
tential trailbridge sites in Rwanda and the three districts as-
sessed in Uganda.

Conclusion & Future Work
In this work, we presented an approach for incorporating
multi-modal geospatial data for identifying river crossing
for trailbridges. We showed that using satellite imagery re-
sults in poor performance and that using multi-modal non-
satellite-imagery data leads to a significant increase in per-
formance (at least 34% increase in balanced accuracy). This
initial investigation showed immense potential for using
multi-modal geospatial data. Future work will explore ad-
ditional ways to leverage more unlabelled data (e.g., semi-
supervision or self-supervision) and to fuse multi-modal
geospatial data (e.g., early or late fusion) to improve predic-
tive performance. Furthermore, combining high-resolution
imagery and our chosen data modalities is a potential avenue
of investigation.

One of the main purposes of this project was to deter-
mine which data modality is most effective in locating po-
tential trailbridge sites, i.e., river crossings, and how effec-
tive these data modalities could be compared to satellite im-
agery. Waterways, admin boundaries, OSM base image, and
slope were found to be the most effective. Finding a substi-
tute for insufficient waterways datasets was one of the analy-
sis’s most critical and challenging aspects. Future work will
explore incorporating more prior knowledge. For instance,
sections of an administrative boundary that are not sinuous
are unlikely to be a waterway, such as sections or slope val-
ues perpendicular to the line can eliminate the possibility of
water, e.g., a ridgeline or hillside.

Broader Impact Recent research has extensively focused
on deep learning approaches for satellite imagery. We
showed that using different types of more processed geospa-
tial data can be highly beneficial for predictive task perfor-



mance. We hope our investigation (extraction, data augmen-
tation and training) will provide insights on using these data
modalities effectively for deep learning approaches.

The ability to quickly and cost-effectively estimate trail-
bridge needs across a region or nation is key to BBNP’s
strategic priorities. It will support productive conversations
with governments and other influential stakeholders at the
national level. Further, it will equip BBNP with informa-
tion to advise governments and other influential stakehold-
ers on long-term rural transportation infrastructure plans. By
scaling and automating the efforts of remote site assessment,
we provide funders of rural infrastructure impact estimates
for household income, reduction in travel time, market ac-
cess, school enrollment, truancy, and access to health cen-
ters. In doing so, we promote increased investment in rural
transportation infrastructure and emphasize its importance
in eliminating poverty on a global scale.
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Finding and Building Bridges: Details
Remote assessment and criterion BBNP’s strategy for
addressing rural access at scale includes supporting national
governments in incorporating pedestrian and motorcycle in-
frastructure into their transportation planning. To support
that work, BBNP conducts needs assessments to determine
the scope and distribution of trailbridge needs. Specifically,
the target is to locate rivers or other barriers, e.g., ravines

1. where pedestrians, bicyclists, livestock, and light motor-
ized traffic need to cross to reach important destinations,
e.g., markets, farms, healthcare centers, and schools, and

2. where an all-weather crossing, e.g., a vehicular bridge
that is passable year-round, doesn’t exist within 300 me-
ters.

Trailbridges The bridges are designed to handle live loads
such as pedestrians, motorbikes, and livestock such as cattle.
The bridges’ decks are intentionally narrow (1 meter-wide)
so that heavier vehicles can not attempt to pass. Depending
on river characteristics, terrain, and the span, trailbridges can
utilize various designs such as steel truss, concrete, stone
arch, concrete, wooden, and cable suspended. BBNP focuses
primarily on cable suspended bridges, as these are the most
efficient for spanning longer distances (30 meters or more)
where local governments typically request assistance with
designing, funding, and construction.

Identifying trailbridge sites In 2018, BBNP conducted a
nationwide needs assessment in Rwanda. They contacted lo-
cal leaders at the sector or cell level across the entire coun-
try, informed them about the trailbridge needs assessment,
and provided the opportunity to submit trailbridge requests
for their communities. BBNP’s call center would follow up
with local officials for any cells and sectors that did not sub-
mit trailbridge requests to confirm they knew about the as-
sessment and did not need any trailbridges. Over 1,500 sites
were submitted using this process, and after vetting the sites
for invalid submissions such as vehicular bridges, sites were
visited for in-field assessments. While conducting field as-
sessments, assessors would ask if any other crossings needed
a trailbridge in the area. Assessors were assigned to specific
districts and tasked with confirming that all sites had been
identified in a sector before moving to the next. The same
process was utilized in Uganda for three districts, and these
sites, combined with the Rwanda sites are the training data
for remote site identification. While the nationwide needs
assessment’s original purpose was not to produce training
data, its objective was to identify every river crossing need-
ing a trailbridge in all of Rwanda.

Whether or not a river crossing is a potential site comes
down to the local community’s opinion and a few other fac-
tors. The most common reason for a river crossing not to be
a potential trailbridge is because the community only wants
a vehicular bridge. In rural areas of East Africa, particularly
Uganda, it is common for a path or road to be wide enough
for vehicles to pass while the main form of transportation
is walking and motorbikes. For this reason, BBNP still con-
siders these crossings as potential sites, and it is common for

communities to prefer a vehicle bridge but still accept a trail-
bridge. Ultimately, the local district/county government de-
cides on which type of bridge to invest in, as a vehicle bridge
is many times more expensive. Often at these locations, ve-
hicles can pass during the dry season, and trailbridges are
cost-efficient solutions for a 3-4 month rainy season. A no-
table exception to a river crossing not being a potential site
is when a path crossing a waterway is present due to few
individuals crossing or animals/livestock. these paths are
sometimes referred to as “game trails” or “livestock trails”.
Trailbridges are typically placed along the main route be-
tween villages. These crossings can be determined when
river crossings are far from communities without any sign
of a reasonable path from likely origins and destinations.
Therefore, we assume that if there is a path and a barrier,
e.g., river, and no bridge is present, than that location needs
a bridge. It is also common for communities to request a
bridge at river crossings where they have a log bridge when
the log bridge is destroyed each year after the first heavy
rainfall. The goal for this project was to identify all likely
pedestrian river crossings and then manually determine if a
bridge is needed until we have more data to train the model
on differentiating itself.

Data Extraction, Usage and License
We extracted the geospatial data from public resources.
In what follows, we explain the choice of data modali-
ties before detailing the process of data extraction and pre-
processing. Finally, we briefly state the data licence for each
data modality.

Choice of Data Modalities Most of Building Bridges
Non-Profit’s existing trailbridges in Rwanda and Uganda are
along rivers that are not represented in the countries’ water-
ways data. BBNP has noted that most constructed bridges
connected two local administrations, i,e, sector, parish, or
county. This is not surprising, as rivers make natural land-
marks for administrative boundaries. Therefore, administra-
tive boundaries were included as a potential alternative or
supplement to insufficient waterways data. Terrain elevation,
slope, OSM roads, and waterways were included to indicate
whether a river or gorge is present in the tile. We investi-
gated whether raster population data (100-meter resolution)
would contribute to the model by informing it where people
live, including the more densely populated areas where com-
mon destinations of travelers – markets, schools, and health
centers – are likely to be. Vast areas without population e.g.
protected areas, game reserves, large farms, etc. that do not
need bridges due to the lack of pedestrian traffic are also vis-
ible in this dataset. In addition to extracting specific layers of
the OSM, we also extracted the entire map as an image. First,
standard deep learning models have achieved outstanding
performances for images, and thus, using images could ease
the transfer of pre-trained models to the task of remote site
identification. Second, when extracting roads and waterways
from OSM, we noticed that many more minor roads and wa-
terways were not “labele” as such. However, they are visible
in the “image” maps of OSM.
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Figure 8: Visualization of Rwanda geospatial data used for extraction. These data modalities are rasterized, augmented and
used for training.

Detailed Data Extraction and Pre-Processing
If not stated, we rasterize the data with an output resolution
of 1/3600, i.e., 1-arc.

Administrative Boundaries The admin boundary
datasets consists of shapefiles of polygon geometries. If we
rasterize these shape file, our rasterization will produce large
polygons, instead of, what we want, lines that represent
the boundaries. Therefore, we first convert the polygons to
line string geometries. After the conversion, we rasterize

the shapefile. The raster contains only two unique pixel
values – value 1 represents the presence of an administrative
boundary, and value 0 represents its absence.

Elevation and Slope We used the Google Earth En-
gine4 (Gorelick et al. 2017) to extract elevation and slope
rasters from the NASADEM digital elevation model. We
constraint the elevation values to [0, 9000] and slope values

4https://earthengine.google.com/
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Figure 9: Visualization of Uganda geospatial data used for extraction. These data modalities are rasterized, augmented and
used for training.

to [0, 90]. We scale and quantize the values to an image value
space [0, 255] and saved the image to the red channel of the

GeoTIFF file. The resolution of the dataset is 30m per pixel.



Model Data Modalities Data version 1 Data version 2
in- and out-domain test in-domain test

w/o SI AB, OSM-I, Only SI Rwanda Uganda avg. Rwanda Uganda avg.
OSM-W, SL test test test test test test

ResNet-50 (transfer) ✓ 0.49 ±0.01 0.66 ±0.01 0.56 ±0.01 0.45 ±0.02 0.64 ±0.02 0.52 ± < 0.01

ResNet-50 (full) ✓ 0.47 ±0.01 0.69 ±0.01 0.56 ±0.01 0.41 ±0.01 0.64 ±0.03 0.48 ±0.01

ResNet-50 (transfer) ✓ 0.61 ±0.01 0.64 ±0.01 0.68 ±0.01 0.58 ±0.01 0.82 ±0.02 0.75 ±0.01

ResNet-50 (full) ✓ 0.78 ± < 0.01 0.63 ±0.01 0.74 ± < 0.01 0.79 ±0.01 0.77 ±0.02 0.83 ±0.01

MixMatch (ResNet-50, full) ✓ 0.82 ±0.01 0.55 ±0.03 0.75 ±0.01 0.82 ±0.01 0.76 ±0.01 0.85 ±0.01

ResNet-50 (transfer) ✓ 0.58 ±0.02 0.66 ± < 0.01 0.68 ±0.01 0.53 ±0.03 0.81 ±0.01 0.74 ±0.01

ResNet-50 (full) ✓ 0.78 ±0.01 0.66 ±0.01 0.75 ±0.01 0.72 ±0.03 0.83 ±0.01 0.82 ±0.01

MixMatch (ResNet-50, full) ✓ 0.82 ± < 0.01 0.68 ±0.03 0.78 ±0.01 0.83 ±0.01 0.82 ±0.03 0.87 ±0.01

Table 3: Bridge site estimation (1200m) weighted F1 score results (higher is better). We present results (mean and standard
error for three runs each) for different models and different modalities. We used ResNet-50 as the architecture backbone, and
trained the entire network (full) or used it as transfer learning in which only the last N layers were trained (transfer). We varied
the types of data modalities used for training. We had three data modality settings: 1) all types of geospatial data except for
satellite imagery (w/o SI), 2) the best four performing data modalities admin boundaries (AB), OSM base image (OSM-I), OSM
waterways (OSM-w) and slope (SL), and 3) only satellite imagery (Only SI). We report balanced accuracy for both data versions
1 and 2 (with a detailed country-wise split) as mean and standard error over three independent runs with different seed.

Tile size Type Data version 1 Data version 2

300m supervised 72.10 ±0.63 83.45 ±0.95

600m supervised 75.70 ±0.26 81.26 ±1.03

1200m supervised 75.13 ±1.14 85.29 ±0.68

Table 4: Impact of tile size. Balanced accuracy (higher is
better) of the best performing approaches w.r.t. tile size.

Population The population data are provided as rasterized
GeoTIFF files. The data resolution is 100m.

OpenStreetMap OSM provides a host of vector-based ge-
ometries around - from roads to buildings to parks. We iden-
tified two potentially valuable subsets of this data - water-
ways and roads. We first performed discretization by map-
ping categorical values, e.g., the type of road or waterway, to
a scalar value that can be used in rasterization. After raster-
ization, we ignore all subtypes of roads and waterways and
set all road and waterway pixels to 1, all non road and water
way pixels to 0. In addition to extracting specific layers of
the OSM, we also extracted the entire map as an image.

After rasterization, we used both Rwanda and Uganda
data to calculate the mean and standard deviation of all
data channels to normalize the data for training and eval-
uation. We have visualized all data modalities for Rwanda
and Uganda in Figures 8 and 9, respectively.

Data Licence
The Rwanda administrative boundaries data is publicly
available through the National Institute of Statistics of
Rwanda and can be found here5. The Uganda admin
boundaries were extracted from CloudMade data, derived
from OpenStreetMap (www.openstreetmap.org) and is made
available by MapCruzin (www.mapcruzin.com) and is li-
censed under the terms of the Creative Commons Attribu-
tion Share-Alike 2.0 license. Earth Engine is a platform for

5https://www.statistics.gov.rw/publications/rwanda-
administrative-map

scientific analysis and visualization of geospatial datasets
and can be used for academic and non-profit purposes. The
WorldPop population data is published under the Creative
Commons Attribution 4.0 International License6, i.e., users
are free to use as long as clear attribution of the source is
provided. OSM data is free to use for any purpose.

Additional Evaluation Details and Results
Data Versions 1 and 2. For data version 1, we have 815
training bridge sites (all in Rwanda), 242 validation bridge
sites (all in Rwanda) and 620 test bridge sites (370 in
Rwanda, 250 in Uganda). For data version 2, we have 982
bridge sites (815 in Rwanda, 167 in Uganda), 261 valida-
tion bridge sites (242 in Rwanda, 19 bridge sites in Uganda)
and 434 test bridge sites (370 in Rwanda, 64 in Uganda). We
sampled as many negative sites as there are positive sites.

Data V1 splits Rwanda into 10 parts equally by its longi-
tude. Parts 1-3 and 7-10 are used for train, part 4 is used for
validation, parts 5, 6, and Uganda are used for testing. Data
V2 uses Rwanda as in Data V1 and further splits Uganda
into 10 parts equally by its longitude. Parts 1-2 are used for
testing and 3-8 are used for training, parts 9-10 are used for
validation. We visualized the split in Figure 10.

Hyperparameters for the Semi-Supervised Evaluation
with MixMatch We evaluated on a large grid of hyper-
parameter for MixMatch and chose the model with the best
validation performance. We used the following hyperparam-
eter space:
• λU = [[0, 0.01, 0.1, 1.0]

• EMA decay rate = [0.5, 0.75, 0.9]

• T = [0.5, 0.75]

• α = [0.25, 0.5, 0.75]

Implementation and Open Source
We implemented the entire work in PyTorch and have made
it available in the Supplementary Materials. Upon accep-

6http://creativecommons.org/licenses/by/4.0



tance, both code implementation and data will be open-
sourced for research-only usage.

Additional Evaluation Results
The balanced F1 scores for 1200m tiles are found in Table 3.
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Figure 10: Visualization of train, validation, test split of data version 1 and 2. We split the labelled data according to
its geographic location into different sets (train, validation and test). The unlabelled Uganda part (grey) was used for semi-
supervised learning (SSL). The scattered points on the subplots represent the trailbridge locations.


